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Abstract

Our main purpose is to describe a very efficient MPP

algorithm for performing one important class of Ising

spin simulations. Results and physical significance of
MPP calculations using the method described here

will be discussed elsewhere. However, we will make a

few comments on the problem under study and report

briefly on results so far. Ted Einstein has provided us
with much guidance in interpreting our initial results

and in suggesting calculations to perform.

1 Introduction

Ising spin simulations occur in many areas of physics
and have attracted the attention of researchers since

the earliest days of electronic computation (Ref. 4).
They provide a very good example of how, from the

point of view of algorithm design, two apparently dis-

parate problem types can be attacked by almost the
same techniques. Some classes of Ising spin calcu-

lations can require speeds far in excess of anything
currently available.

The basic model is easily described. The spin vari-

able a(i) is specified at the nodes of a uniform grid

in two (or three) dimensions. At each grid site the

spin can take on only the values +1 and -1. Spins

are related to one another via the energy expression
given by the Hamiltonian

{i.J}

where {i, j} ranges over all nearest neighbor pairs of

sites. In an £ x t square lattice, at site i we have the

local energy expression

E(i) -= -a(i)× (a(i+ l)+ a(i-l)

+,,(i+ l)+ ,,(i- l)).

In most cases periodic boundary conditions are im-

posed, so that i + 1 and i + t are to be determined
rood l.

One wishes to compute various averages with re-

spect to the probability P(C) for a configuration of

spins, C, to occur. The "classical" algorithm for using
Monte Carlo methods to sample configuration space

is due to Metropolis, Rosenbluth, Rosenbluth, Teller

and Teller (Ref. 4), (called the M(RT) 2 algorithm
for short). It consists of a series of moves through

configuration space, making use of the fact that for

each C, P(C) cx exp(-JE(C)/kT). Here E(C) is the
energy associated with configuration C, J is the cou-

pling constant for the problem under study, T is the
temperature and k is Boltzmann's constant. A site i

is chosen at random and the change in energy AE(i)
which would result in reversing the spin at that site
is determined. Since only the site i and its four near-

est neighbors are involved, it is easy to see that the
change in energy is

AE(i) = (E'(i) - E(i))

+(E'{i + 1) - Z{i + 1))

+(E'(i- 1) - E(i- 1))

+(E'(i + t) - E(i + l))

+(E'(i - t) - E(i - l))

= -4E(i)

If AE(i) < O, then the move is "accepted" and the

signof .(i) is reversed.In caseAE(1)> 0, the move
is accepted with probability exp(-JAE/kT).

It can be shown that the M(RT) 2 algorithm de-

fines a Markov process which samples the "correct"
(Boltzmann) distribution of configuration of spins.

However, for a large system several hundreds of thou-

sands, or even millions of updates of each site must be

performed in order to approach a single equilibrium

configuration, and often averages over many such con-

figurations are required. Most of the work is in gen-
erating the random numbers, since as many as 1012
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moves of sites may be required in a single simulation.

We will delay discussion of this critical aspect for the

moment, and concentrate on how to modify M(RT) 2

in order to get an algorithm well suited to the MPP.

Later we explain why this algorithm is also well suited

to vector machines, and we then describe one method

for vectorizing the generation and testing of random
numbers.

2 Algorithm

The MPP consists of a square array of 128x128 single-

bit processors, having an SIMD architecture. Proces-
sors are interconnected via nearest neighbor bonds

and periodic boundary conditions is one possible con-

nection pattern for border processors. Because of
its SIMD architecture, the MPP is extremely well

adapted to image processing applications and, in fact,

one point we hope to make is that, so far as algorithms

are concerned, Ising spin simulations are a type of im-

age processing problem.

One is tempted to think of associating processors

with spin sites in a one-one manner. However, this
does not make very good use of the machine, since in

the M(RT) 2 algorithm, only one site is examined for
each move. Instead of mapping sites to processors in

the obvious way, we instead notice that the expres-

sions for the energy associated with a site are similar

in form to the central difference approximation used

to solve the Poisson equation,

_V2u - p.

In the Poisson case, a grid site and its four nearest

neighbors are related through the finite difference ex-

pression

-,,(i - ,) - - 1}

+ 1) - u(i ÷ t) = (,a=)(Av) • p(O.

A common strategy used in implementing iterative

methods for solving the Poisson equation is to use

the "red-black ordering" depicted below:

R B R B R B

B R B R B R

R B R B R B

B R B R B R

Since no pair of red sites axe nearest neighbors, all red

sites can be updated "simultaneously". These values

can then be used to update the black sites, and so-

forth, alternating on each iteration between red and
black sites.

The same idea can be applied to modify M(RT) 2.

Spin flips can be attempted at all red sites or at all

black sites. This is a different Markov process than

M(RT) 2 but the same distribution is sampled. Of

course it is the dynamical aspects which are of inter-

est now, rather than merely the converged solution.
This use of colors is part of the so-called multi-spin

algorithm (Ref. 5). In order to implement multi-spin
on the MPP, all sites of a single color can be associ-

ated with a single MPP plane of 128x128 processors.

The problem to which we have applied multi-spin is

slightly more complicated than that of attempting to

flip single sites (Glauber dynamics). Instead we want

to try to exchange the spins of a pair of neighboring

sites. These spin exchanges or Kawasaki dynamics

calculations can be used to study phenomena such as

growth of magnetic domains (Ref. 2).

Because spin exchanges are to be attempted, eight
different sites are involved in each move. For exam-

ple to interchange sites kx and k2 we have all of the

depicted bonds to consider. The change in energy is

J3

k_

J2

the sum of changes over all eight sites and is given by

the expression

&E = -
, + +

- - ,,(is)} •

In order to apply the multi-spin idea enough "col-

ors" must be assigned so that no two sites of the same
"color" are involved in the same move. This can be

accomplished by partitioning sites into sixteen groups
as is shown below:
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15 16 13 14 15 16

11 12 9 10 11 12
7 8 5 6 7 8

3 4 1 2 3 4

13 14 15 16

Each group is now associated with a single 128x128

MPP bit plane, so that a 512x512 simulation can be

handled in a straight-forward way.

Notice now that the part of the expression for

AE which is enclosed in brackets can take on only

seven distinct values, namely {-6, -4, -2, 0, 2, 4, 6).

The MPP array consists of single-bit processors and

Boolean operations can be done simultaneously in a

single operation on all 2 TM processors. The compu-

tation of AE can be reduced to Boolean operations

by first associating the spin values a = {+1, -1} with

Boolean values = {1, 0) (which in effect makes a tran-

scription to a lattice gas model), and next noticing
that the value of the bracket part of AE corresponds

to the sum of the I bits of the Boolean expression. For

example:

Spin version:

{11 - 1111)

Value = 4.

Boolean version:

Sum of bits = 5

{110111}

The complete correspondence is as follows:

Spin Sum Bit Sum Representation
6

4

2

0

-2

-4

-6

6 110

5 101

4 100

$ 011

2 010

1 001

0 000

The bit representation for the sum of bits can it-

self be determined by defining summation of Boolean

expressions by Boolean operations. Assume that

BITS(I), I = 1,2,..,6 is an array of bit planes each

consisting of all 128x128 sites of a given color. The
bit representation of the sum consists of three more

bit planes B1, B2, and B3, initially all zero. Addition

is performed bit by bit with the proper rules for car-
ries. The correct representation for the final values is

obtained by executing the following loop.

10

DO 10 I=1,6

B1 = B1 .OR• (BITS(I)
.AND. B3 .AND. B2)

B2 = (.NOT. (BITS(I)

.AND. B3) .XOR. (.NOT. B2))

B3 = (.NOT. BITS (I))

•XOR. (.NOT. B3)

CONTINUE

The sign of the sum of neighboring spins is deter-

mined by the value of the high order bit B1. This

must be combined with the value of-2(a(k2}-a(kl )}
to determine when a random number needs to be com-

pared with exp(-JAE/kT}. Of course, the exponen-

tial also takes only finitely many values, so that it is

easy to parallelize the comparison step. The genera-

tion of random numbers can be done simultaneously
if a method which allows more than 2 TM seeds is used.

We have adapted a program due to Marsaglia and

Kahaner (Ref. 3}, but other methods are possible.
In any case, 2 TM pairs of sites are handled in a sin-

gle step. The total number different types of nearest

neighbor pairs ( < 1,2 >,< 6,7 >,< 9,5 >, etc.} is
32, and one should not cycle through these types in a

fixed pattern because this marching introduces false

dynamics into the simulation.

3 Vector Machines

Essentially the same algorithm can be used on a vec-

tor machine such as the CYBER 205. The repre-

sentations for AE can be computed very efficiently

using bit vector operations. However, vector instruc-

tions are not really the same as parallel instructions,

and so the 2 TM random numbers which are required

for each step take a lot of time to generate on a vec-

tor machine• The way to alleviate this is to reduce

even the comparison with random numbers to vector

operations on bit arrays. Assume, for convenience,

that the value of -2(a(k2) - a(kl)) is -4, and let

a = exp(-8J/kT). As in (Ref. 1), we create bit

arrays D1 DO of length 214 where DID0 = 11 with
probability as; D1D0 = 10 with probability a 2 - a s,

D1D0 = 01 with probability a - a s and D1D0 = 00

with probability 1 - a. This is easily done by generat-
ing 214 random numbers and noting where they fall in

the intervals I3 = [0, as), I2 = [a s, a2), I1 = [a s, a)

and I0 = [a, 1]. The test can now be performed by

computing the bits of (B1 B2 B3 + D1 DO) @ 001.
Here the operation _ means addition modified so that

the high-order bit is not "turned off" by a carry op-

eration (e.g. 111 $ 001 = 100). After this operation
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has been performed, exchanges can be made at all

sites with high-order bit equal to 1.

A little reflection reveals that the above method

performs exchanges with nearly the correct frequency,

because the bit vectors D1D0 approximate the cor-

rect probability distribution. After D1D0 have been

used for a step, the vectors must be permuted in some

random fashion, and to insure that the false period-

icities are not introduced, the DID0 vector should

occasionally be re-loaded by generating 2 TM new ran-

dom numbers. This, of course, is much more efficient

than generating a full set of random numbers for each

step.
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4 Preliminary Results

The first program to implement the algorithm on

the MPP was written in Parallel Pascal by Julie

O'Connell. However, signigicant portions of it were

later recoded in PEARL by Jim Abeles. The result is

a code which performs better than 200 million tests

of spin sites per second. Since our goal is to study

the long time growth of domains, very long simulation

times and averages over many different configurations

are required. The present code makes this a practical

possibility.

As has been mentioned, in the case of spin ex-

changes great care must be taken to avoid introducing

any false periodicities into the results. This need for

care is especially acute in our study because there is

considerable controversy about the long time behav-

ior of such models (Ref. 6}. Preliminary runs on the

MPP indicate that our algorithm is correct. We are

now conducting more extensive tests of the reliability

of our technique for using the random number gener-
ator.
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